From image to emotion :
Multi-label image classification based on Triplet Loss

Youngeun Choi
2020-29885

yechoi7@snu.ac.kr

Abstract

This paper provides a novel approach to multi-label im-
age classification using triplet loss embeddings. The data
for our work are advertisement images and their corre-
sponding sentiment labels. We extracted features from the
images with a pre-trained model (ResNet 50) and used them
as initial states in the next step. The extracted features were
fed to embedding layers consisting of two fully connected
layers. We used triplet loss for training and got the final
embedding size of 256 (batch size) x 256 (embedding di-
mension). For classification, we added a softmax classifier
at the end of our embedding layer. Since triplet loss is not
used for training classifiers, we adopted binary cross en-
tropy loss function for training and separately trained while
freezing all the parameters from the embedding layers. The
experimental results are still behind compared to the base-
line model, yet our proposal has its significance as an at-
tempt to integrate various concepts from the lecture to solve
the issue.

1. Introduction

Expressing oneself with images is prevalent these days,
perhaps even more than texts. Millions of new images are
posted on social network services everyday. Enterprises are
eager to collect information from such posts and try to fol-
low the preference trend. With the help of a fine model
which reads exact emotions from all those images, one may
find a way to figure out the needs of ordinary people. Here,
as a team, we proposed some ideas and conducted experi-
ments on classifying images according to their representing
emotions to address the mentioned issue.

We chose the Pittsburgh advertisement image dataset as
a target of analysis for two reasons. First, advertisement im-
ages are expected to grab people’s attention. To make that
goal, these images tend to express some dramatic moments.
Inferring emotions would be much easier with these images
than with the images capturing everyday life. Second, the

Jeunghyun Lee
2020-25946

jhleeangel@snu.ac.kr

Junghyun Ryu
2021-26380

jhryu30@snu.ac.kr

Pittsburgh dataset provides labels given by multiple annota-
tors. This leads to a multi-class and multi-label classifica-
tion problem, which lets us deal with the data imbalance is-
sues, and explore various loss functions and metrics to best
fit our data. Our approach is distinguished from previous
works in that we used triplet loss to train the embedding
layer for a multi-label classification task.

This paper is organized as follows: Section II gives an
overview of the dataset. Sections III and VI covers the ar-
chitecture of our model and the experimental settings re-
spectively. Section V provides the metric and results of the
experiment while Section VI concludes the paper with dis-
cussion.

2. Dataset

The dataset from Hussain et al [1]] contains 64882 ad-
vertisement images verified by human annotators on Ama-
zon Mechanical Turk and 30340 labeled images. Images
are split into 11 subfolders and five of them are labeled.
For each image, different annotators of three to five made a
list of annotations. Each annotation is categorized into 30
sentiments, such as ’active’, ’afraid’, or alarmed’. Labels
were given as a list for each image for an annotator and the
project is proceeded with arranged labels in a list.

However as previously introduced in Philli et al [2], sen-
timent label is heavily skewed towards certain labels, espe-
cially to ’creative’ which is labeled to *12°. The claim made
in reference is that images labeled ’creative’ are highly la-
beled due to the characteristic of advertisement rather than
sentiment shown in the image. Philli et al [2]] suggested that
the preprocessing data by a method of undersampling can
lead to higher performance in the task. We found this claim
is reasonable and followed the suggestion. We tried to ap-
proach this problem with three different methods; one is to
use plain data without any undersampling and two differ-
ent undersampling methods. The first undersampling strat-
egy we took is to undersample data which are above two
times the mean of distribution. In order to go one step fur-
ther, our plan for the next approach is to apply Tomek links

undersampling. This method will be progressed after the
mid-report submitted since our prioritized goal is to form a
general model for the task.

2.1. Default

As a basic experiment, we used the whole plain dataset
without any undersampling strategy.

2.2. Undersampling

First we attained the mean counted value of each la-
bel. Then, the labels above two times above the mean
were undersampled. The labels were chosen randomly to
go through undersampling.

Each image of given data has the label in the form of
a list and we found it is difficult to handle since we have
a multi-label, multi-class task. So we re-expressed label
one hot encoded form for easier handling the dataset. Then
we counted how many images we have for each label and
take the mean of counts. For labels with counts above two
times above the mean, we randomly chose (count-2*mean)
images for each label and removed them.

After this process, we got the same amount of images
with labeled alleviated skewness. We got 1, 4, 12, 14, 18
labels downsized as a result. In particular, we get *creative’
labels shrink about 43 percent.

labels meaning in sentiment

image (image_num) labels
4. "Alert” : attentive, curious

(@ B
‘_ 6. "Amused” : humored, laughing

sae [4,6, 11, 12,21, 24, 25] 11. "Conscious” : aware, thoughtful,
""" prepared
_ after undersampling : 12. "Crea}ive" H invefnnve, prod_xgn've
4611, 12,21, 24 25] 21. "Inspired” : motivated, ambitious,
EETSTE——— | [+ ¢ 11, 12,21, 24, empowered, hopeful, determined
24. "Manly"
25. "Persuaded”: impressed, enchanted,

immersed

(b)

1. "Active” : energetic, adventurous,
vibrant, enthusiastic, playful

[1,4,9,12,30] 4. "Alert” : attentive, curious
9. "Cheerful” : delighted, happy, joyful,
after i carefree, optimisti
[1,4,9,30] 12. "Creative” : inventive, productive

30. "Youthful?” : childlike

g U]

*2/97682.jpg’

Figure 1. example of dataset. The image ‘80990.jpg’ is contained
in subfolder-0. The image is labeled to ‘4°, ‘6°, ‘11°, ‘12°, “21°,
‘24°, ‘25°. Each label means ‘alert’, ‘amused’, ‘conscious’, ‘cre-
ative’, ‘inspired’, ‘manly’, ‘persuaded’ correspondingly. Also, the
category ‘alert’ embraces sentiments such as ‘attentive’ and ‘cu-
rious’. Labels are not changed after the undersampling process
example of an image, image named ‘97682.jpg’. same as (a).
After the undersampling process, labels of image ‘97682.jpg’ are
changed. Label ‘12’(creative) is removed.

7500 7500
5000 5000
2500 2500

[} [}

Figure 2. distribution of labels. The x-axis represents label cate-
gories and y-axis represents counts for each label. The bar chart
shows the distribution of labels before (left) undersampling and
after (right) undersampling.

3. Related Works

For the baseline of our research, we referenced the work
from Pilli et al(2020) [2]. The same Pittsburgh advertise-
ment image dataset was used in the referenced work. The
architecture proposed in this paper is as follows.

Advertisement image

Feature Extractor Projection and Embedding

Figure 3. Reference architecture 2]

The authors used ResNet 152 for feature extraction and
projected the feature vector into sentiment label word em-
beddings to fully exploit the context of each sentiment label.
For embedding initialization, Google news pre-trained word
embeddings were used. Graph Convolutional Network is
then employed to exploit the semantic relations between
the sentiments of the advertisements. Not only this paper
highlights the importance of semantic relations between la-
bels, it also shows the promising results for the multi-modal
multi-label image classification task.

4. Model architecture

To clarify and to fully understand the research subject,
we started by running a simplest classification model. Since
the dataset consists of advertisement images, we followed
the general advice of transfer learning by using one of the
pre-trained models. After several trials for data exploration,
We formulated the model architecture with two different
training stages.

The first part includes training embedding layers with
triplet loss. In most cases the image feature is extracted
from the pre-trained model and this feature vector is passed

Image (n=30,000) ResNet50 Triplet Learning Embedding Classification
vs) @
freeze %’ o %’ o %]
Q QIO CpS Y CpS ¥ f o]
=1 3 S| —p 4 P4 b
SIHIE gcsg|”|8cse|” g3
2 2 256 x 30
256 x 256
1image = 3 x 224 x 224 Triplet Loss BCE Loss

1 batch = 256 images

Figure 4. Architecture of the proposed model

directly to the classifier. However, we intended to provide
the notion of similarity and dissimilarity to the extracted
feature vector and replaced the top head classification of
ResNet50 with two fully connected layers. These layers
were trained with the triplet loss. As for the triplet sam-
pling, the detailed description will be given in section 3.1.1.
For the latter stage, a simple softmax classification layer
was employed and we trained the layer with Binary-cross
entropy. Considering our dataset has multi-labels, we bina-
rized all the labels for each image beforehand. Below is the
architecture we propose in this paper.

Following is a detailed description of each training pro-
cess. The first training step aimed to shade relationships
between each label onto the embeddings extracted from the
input images. By the first step, we were able to enrich the
contextual link of the embedding. After freezing the pre-
trained model, we trained the embedding layer with triplet
loss. The second training took place on the embedding layer
using the binary cross entropy loss function to go through
the softmax layer as a classifier.

4.1. Triplet Learning

We applied a technique called triplet sampling to achieve
embedding more effectively[3]. Each triplet is composed
with three elements, (anchor, positive, negative). Triplet
sampling is progressed based on triplet loss function.

4.2. Triplet Loss

Triplet loss(L) is given as

L = maz (|| f(A) = f(P)3 = IF(A) = F(N)]3 + Oé,(z)l)

where A, P, N, « is anchor, positive, negative, triplet mar-
gin correspondingly and f(.) is the image embedding func-
tion that maps an image to a point in a Euclidean distance in
embedding space. Through minimizing the loss, we intend
to learn the embedding function f(.) that makes the embed-
ding distance between anchor points and positive points to
be closer than the distance between anchor points and neg-
ative points [3].

4.3. Triplet Sampling

Since our task deals with a multi-labeled multi-class
dataset, we had to carefully sample triplets to ensure more
precise embeddings. We referred to an existing code
(https://github.com/abarthakur/multilabel-deep-metric). In
general multi-class tasks, positives and negatives are se-
lected by whether they belong to the same class as an an-
chor. However in the multi-label setting, we needed an ad-
vanced method. Hence we took similarity between labels
into account to select positives and negatives. First, all data
points were explored within a mini-batch and set as anchors.
Next, we selected points to be positive if the point has a sim-
ilarity score higher than the value set in advance. Here we
computed similarity scores by inner product of among the
labels.

For the hard negative mining, we picked the samples
with closer distance with x embedding with similarity big-
ger than 1 but less similar than the positive. In other words,
negative samples selected in this way are actually closer to
the anchor in the embedding space, but their label similari-
ties are lower compared to the positive example. This means
that these samples are not placed properly in the embedding
space and need to be moved to the proper place according
to label similarities. We additionally considered one easy
negative with small similarities. As embedding is not well
performed for easy negative and too hard negative, we in-
creased the proportion of comparably semi-hard negatives.
Through this process of generating negatives per positive,
we design to create a triplet for the next anchor when it ex-
ceeds the preset value.

5. Experiments

We ran our model on the provided server and used 70
percent of the dataset as a training set, 20 percent of the
dataset as a validation set and 10 percent of the dataset as a
test set. Our experiment was done with the Pytorch version
1.8.1+cul02 setting. Train time was about 250min per each
experiment.

We conducted 4 different experiments with altering hy-

Number of epochs | Triplet Margin
Experiment1 10 1
Experiment2 10 2
Experiment3 20 1
Experiment4 20 2

Table 1. Configurations of the conducted experiments.

perparameters. The experimental configuration that we con-
ducted is as follows.

Triplet margin is a hyperparameter of how much more
we see the difference between the embedding distance be-
tween anchor-positive and anchor-negative in the triplet
loss.

The learning rate of all experiments was initially set to
0.01. For experiment (2) and (3), which were conducted
with 20 epochs, we reset the learning rate to 0.001 after
the 15th epoch because the loss decreases smaller. Hyper-
parameters other than number of epochs and triplet margin
were fixed. Also, while generating triplet samples, we set
the maximum number of triplets per anchor as 1, as well as
the maximum number for every positive. This generated a
single triplet for each anchor and one negative for each pos-
itive. All the other parts of the structure of the model were
kept identical.

6. Results
6.1. Experiment Results

Figure 4 above shows that triplet loss decreased as train-
ing progressed across all the experiment settings. We could
ensure that the training went well, and the loss barely de-
creased after 10 epochs.

The consistent trend of decreasing loss binary cross en-
tropy classification results also ensure that the classification
went well. The tendency increased with the increased epoch.

6.2. Evaluation and Metrics

Evaluation protocol is constructed as follows. We use
mAP and overall F1 score while evaluating the experiment
results and comparing them with the benchmark. Generally
in an emotion classifier where multiple labels are assigned
to a single output after classification, different metrics are
applied to evaluate the model performance. During model
prediction, the model takes an image as an input and pre-
dicts a vector of probabilities for each label. Here, the prob-
ability vector functions as a threshold to obtain a binary vec-
tor similar to ground-truth binary vectors.

6.2.1 Accuracy

One of the simplest ways to compute the performance met-
ric of each model is to measure accuracy on exact binary

Triplet Loss(Pre-training) Triplet Loss(Pre-training)

Triplet Loss(Pre-training)

© ' @

Figure 5. Embedding layer training results, (a) 10epochs, margin
1, (b) 10 epochs, margin 2, (c) 20 epochs, margin 1, (d) 20 epochs,
margin 2

Binary Cross Entropy Loss Binary Cross Entropy Loss

© (o

Figure 6. Classification training with BCE Loss, (a) 10epochs,
margin 1, (b) 10 epochs, margin 2, (c) 20 epochs, margin 1, (d)
20 epochs, margin 2

vector matching.

Accuracy = ik 2)
Y“FPYFN+TP+TN

If we look back at the table where we had FP, FN, TP,

and TN counts for each of our classes. We can sum up the
values across classes to obtain global FP, FN, TP, and TN
counts for the classifier as a whole. This would allow us
to compute a global accuracy score using the formula for
accuracy. Yet, accuracy is not the best performance met-
ric for our dataset. As it simply computes the number of
correct predictions over the total amount of samples, partial
errors are not taken into account. For instance, even though
the model predicts two out of three labels in the image cor-
rectly, it doesn’t get any credit for that since accuracy counts
the prediction as incorrect. In other words, this method of
performance evaluation is therefore too penalizing for not
tolerating partial errors of the model.

6.2.2 F1 score

F1 score for a certain class in image classification refers
to the harmonic mean of its precision and recall. Widely
used as an overall measure of the quality of a classifier’s
prediction, we also computed macro-average F1 score for
the model. The metric averages the precision and recall
scores over each class. We decided to use macro-average
fl score rather than micro-average as the data we have is
imbalanced. Macro-averaging weighs each of the classes
equally which tackles the issue with imbalanced data that
occurs when the classifier performs well on certain classes
while not on the others.

Figure 7. F1 score of Training for classifier, (a) 10epochs, margin
1, (b) 10 epochs, margin 2, (c) 20 epochs, margin 1, (d) 20 epochs,
margin 2

6.3. mAP score

Also, in this part, an average precision (AP) will be com-
puted for each model during experiments. Average preci-
sion is one of the most widely used metrics these days to
evaluate and compare the performance of algorithms. Pre-
cision represents the amount of successful predictions over
all. Recall, also known as sensitivity, is the amount of suc-
cessful predictions over the ground truths.

TP B TP
TP+ FP allpredictions

Precision =

3)

TP B TP
TP+ FN allGroundTruths

PR curve is a method of evaluating the performance of a
classifier due to changes in the threshold value for the con-
fidence level. The confidence level tells how confident the
algorithm is about what it does. The area under the PR curve
is the AP value. Since Precision and Recall are often com-
plementary, the area under this curve is an indicator of the
overall performance of the model. The mean average preci-
sion can be calculated by taking the mean AP values over all
classes and overall thresholds (0.5). Note that the reported
results below took validation sets into account.

Recall = “4)

(a) (b)
R o AN AN\
N\ 1B 0250 /
s S S AR\ W
- 0200 NG
y. —— S
(c) (d)

Figure 8. mean Average Precision score of Training for classifier,
(a) 10epochs, margin 1, (b) 10 epochs, margin 2, (c) 20 epochs,
margin 1, (d) 20 epochs, margin 2

] | mAP | flscore |

Pilli (2020) 0.233 | 0.399 (overall)
GCN (2019) | 0.332 | 0.470 (overall)
Experiment 1 | 0.271 | 0.179 (macro)
Experiment 2 | 0.273 | 0.176 (macro)
Experiment 3 | 0.252 | 0.175 (macro)
Experiment 4 | 0.257 | 0.177 (macro)

Table 2. Model evaluation with benchmark and experimented re-
sults

7. Conclusion

To best our knowledge, this paper is the first attempt to
integrate transfer learning and triplet training. Initially we
extracted positional and semantic information from the im-
age with the pre-trained ResNet50. In addition to that, we
employed the triplet loss to build embedding layers to give
the notion of similarity and dissimilarity between the points.

If we have a chance to further develop the idea that we
propose, we could proceed with more experiments. Apply-
ing contrastive loss and see if there is a significant differ-
ence between the two settings. Also we can consider ex-
tracting the text from the advertisement image and exploit
this information and move the focus from the multi-label
classification to multi-modal classification problem.

References

(1]

(2]

(3]

Z. Hussain, M. Zhang, X. Zhang, K. Ye, C. Thomas, Z. Agha,
N. Ong, and A. Kovashka. Automatic understanding of image
and video advertisements. CVPR, 2017.

S. Pilli, M. Patwardhan, N. Pedanekar, and S. Karander. Pre-
dicting sentiments in image advertisements using semantic re-
lations among sentiment labels. CVPR, 2020.

J. Wang, Y. song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,
B. Chen, and Y. Wu. Learning fine-grained image similarity
with deep ranking. IEEE conference on computer vision and
pattern recognition, 2014.

