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Abstract

The encoder-decoder structured Convolutional Net-
works(CNNs) are a general approach for semantic segmen-
tation tasks. However, it is hard to capture precise bound-
aries of objects, and the boundary information loss is in-
evitable since the input image is contracted to small-sized
features through the encoder and then extended as the origi-
nal size through the decoder. To tackle this problem, we pro-
pose a whole new approach, Superpixel-based Graph Con-
volutional Network, not containing any pooling layer thus,
preserving the shape of a target object. At first, the super-
pixel algorithm segments an image into plausible clusters
with RGB values of pixels. Then, Graph Convolutional Net-
works(GCNs) predict an assigned label of each superpixel,
regarding them as a node of a graph. In other words, our
GCN framework conducts a node prediction for each image
converted as a superpixel graph. We utilize two graph con-
volutions to capture the semantics of nodes, spectral convo-
lutions with topology adaptiveness and spatial convolutions
with weighted node sampling. Also, we propose a novel
loss function, Superpixel Penalty Loss, to address imbal-
ance problems of the classes and the size of superpixels.
Experiments are performed on the UAVid dataset, with has
ambiguous boundaries in their target objects. Although the
proposed method does not reach the state-of-the-art perfor-
mance, it shows comparable ability to classify each pixel’s
label and expands the concept of the GCN combined with
superpixel into semantic segmentation.

1. Introduction
Deep networks have achieved significant advancements

in semantic segmentation on account of recent improve-
ments in deep learning. U-Net[16] uses skip connections
to take advantage of multiscale information as a representa-
tion of the encoder-decoder architecture. U-Net’s promising

Figure 1. Example of graph generation via superpixel. Each super-
pixel cluster is treated as a node of a graph. Each node represent a
diminutive region containing color and spatial information and its
class labels.

performance was due to its ability to improve feature maps
by mixing low-level detail information with high-level se-
mantic information through skip connections.

However, the encoder-decoder architecture’s[22, 25, 20]
shortcomings becomes apparent. When a filter is applied to
a group of local pixels, the destination pixel’s value is cal-
culated utilizing just the pixel and its surroundings. This
implies that only peripheral information may be used to ac-
quire further information, which may introduce bias due to
the lack of long-range information. Larger convolution fil-
ters or deeper networks with more convolution layers are
two naı̈ve attempts to alleviate the issue. However, the pro-
cessing burden increases, and the results do not improve
much. Furthermore, most encoder-decoder models over-
look the spatial connection between objects when extracting
deep features via convolutional and pooling layers, which
contain essential information to assign the right value. Pro-
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Figure 2. All the train process are conducted under the graph state. Graphs are generated as a preprocessing with superpixel map. Also,
same superpixel mapping are applied for the ground truth image to generate ground truth nodes.

cessing high-resolution pictures, which include complex
objects and spatial interactions, will exacerbate this issue.

To tackle the problem, even under the discontinuous dis-
tribution of classes and pixel values between objects, graphs
can express the necessary information between pixels in
terms of reciprocal relations. The graph neural network may
integrate the local data with the selected features by aug-
menting the pixel information such as RGB values and their
geometrics. The objects and their surrounding information
can create a graph, and the nodes of the graph contain color
and spatial information of a group of pixels, whereas the
edges express the spatial relationship between the objects.
It enables to communicate characteristics across adjacent
nodes. While the model transfers necessary information to
other nodes , the characteristics of each node can be mod-
ified in the GNN. It compensates the chronic problem of
CNN that lacks of structural information and resolves the
dilemma between expanding the receptive field while main-
taining useful features. Superpixels are used in computer
vision to compress visual data that have the similar charac-
teristics surrounding other pixels. Superpixels frequently
used in semantic segmentation issues to efficiently mini-
mize the amount of features of the image for further pro-
cessing. Numerous approaches have been conducted to ef-
fectively divide the superpixels on the conventional grid.
Our important discovery is that superpixels may be linked to
a standard image grid. We created a train-based technique
of Superpixel Graph Neural Network for Semantic Segmen-
tation.

A graph is a collection of nodes and edges. Exist-
ing graphs can be described with two different learning
frameworks[13]: transductive learning and inductive learn-
ing. During the training and prediction stages of trans-
ductive learning, the edges and the nodes stay unchanged.
Thus, it does not allow for generalization to nodes and edges
that are not visible. In comparison, inductive learning be-
gins with the learning of a model across a training network
with certain graph attributes. The trained model can approx-
imate unknown features that may be linked in the training

Figure 3. Each convolutional layer aggregate neighborhood node’s
embedding information Nn, k to the target node Nt.

graph.
Graph Networks (GNNs) broaden networks with a wide

range of applications, from simple and monotonous to ir-
regular and unbalanced tasks by graph convolution random
graphs, and have showed promise in a variety of fields, in-
cluding computer vision.

In this paper, GNN is combined with superpixel and pro-
vides an efficient operation to integrate information from
nearby nodes using 2D convolutions with distinct filter ker-
nels given the feature information generated by the super-
pixel method

2. Related Work
2.1. Semantic Segmentation

Many vision-based applications, including autonomous
driving, remote sensing, and medical image analysis, bene-
fit from semantic segmentation since it can predict seman-
tic category for the entire pixel data in images. Information
images contain varies in a wide range, sometimes it comes
with small or big objects, distant or near objects, and within
or outside object boundaries, accurately anticipating label
for each pixel is difficult. [22]
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Scene segmentation[26, 27, 21] is a difficult but impor-
tant endeavor to divide the categories to each pixel in scene
pictures. It’s vital to enhance feature similarity between
objects while maintaining feature differentiation amongst
them. Due to its huge resolution, precise segmentation is
a prominent issue. It is used in a variety of design tasks,
including town development and automobile surveillance.
Numerous academics recently looked at the difficult chal-
lenge of segmenting Cityscape images using different deep
learning models. Deep Convolutional Neural Networks are
used in most of the Fully Convolutional Networks, despite
the fact that the latter is intended to extract local features
and lacks the capacity to represent long-range contextual
information. Transformer-based Neural Networks[18]have
been popular in numerous different tasks including seman-
tic segmentation. Transformer might better recognize long-
range relationships thanks to its non-convolutional structure
and attention modules.

2.2. Superpixel

Superpixel is one of the commonly used approach to seg-
ment an image into a number of clusters by grouping pix-
els into perceptually meaningful atomic regions. SLIC[1]
adopts k-means clustering to group nearest pixels w.r.t both
color and spatial distance, by converting CIELab color
space. SSN[7] first suggested deep learning based super-
pixel method, defining soft-association map, also called dif-
ferentiable SLIC. SFCN[24] extend the concept of SSN
by adopting FCN[11] as prior step before obtaining super-
pixel association map. Also, LSN-Net[28] suggested non-
iterative lifelong learning strategy with unsupervised CNN,
while reducing computation complexity.

Unlike semantic segmentation, superpixel does not re-
quire significant contraction of image. Therefore, super-
pixel is suitable to maintain a boundary information of rel-
atively small object or ambiguous edges, which are easily
disregarded in encoder-decoder structure. In this paper, su-
perpixel is used as a preprocessing of our framework to con-
vert the grid-structured image into graph-structured image.

3. Preliminaries
3.1. Graph Neural Network

Graph Neural Network(GNN) is a network that has been
applied to graph-structured data such as road networks,
protein-protein interaction, and social networks. Within
various kinds of social and physical phenomena that can be
interpreted with the graph structure, GNN efficiently cap-
tures the relationships between nodes and edges using their
given attributes. To update the state of each node and to out-
put the desired feature from a graph, GNN mainly adopts
convolutional operation, which shares the same properties
with CNN such as local connectivity, learnable filters, and

use of multi-layer. Graph Convolutional Network(GCN)
can be categorized by a spectral and spatial convolutional
network.

3.2. Spectral Graph Convolution

Spectral graph convolution[8, 2, 3] uses spectral filters
based on a Fourier transform of graph signal, an eigen-
decomposition of graph Laplacian matrix. However, it re-
quires an entire and fixed graph since the graph Laplacian
depends on the overall graph structure. Thus the model can-
not be adapted on newly generated nodes which means the
change of the original graph structure. To overcome its lim-
itation, modification of previous networks such as TAGCN,
SGCN[23], and APPNP[9] have been proposed, which are
adaptive to the topology of arbitrary graph and have lower
computational complexity.

3.3. Spatial Graph Convolution

As opposed to this transductive learning, spatial graph
convolution is inductive learning which can be generalized
to previously unseen data. Spatial graph convolution[14]
achieves its inductiveness by convolving graph with spatial
filters while aggregating information of locally connected
neighborhoods. Spatai convolutional networks learn a node
embedding function only reflecting the node’s local neigh-
borhood instead of referring entire graph, the model suc-
cessfully works on unseen graphs or continuous changes in
the graph. GraphSAGE[5] randomly samples target nodes
and their fixed number of neighborhoods. Then these sam-
pled subgraphs go through a learnable aggregator sharing
the same weights. Attention based spatial convolutions,
such as GAT[19], AGNN[17], have been also proposed to
dynamically adjust weights of neighbor nodes.

4. Proposed Method
4.1. Superpixel Graph Generation

Prior to the graph generation, superpixel segmentation is
conducted as a preprocessing. Each superpixel represents
a group of pixels containing similar spatial and color in-
formation. Superpixel is very efficient method to segments
region sensitively, retaining boundary well, while each clus-
ter includes information about original image, Cmean and
Pmean,

Cj,mean =

∑Nj

i (R,G,B)i
Nj,pixel

(1)

Pj,mean =

∑Nj

i (x, y)i
Nj,pixel

, (2)

where Nj,pixel is the number of pixels in j-th cluster.
Each superpixel cluster is allocated as a node V of a

graph G = (V,E), which have 5-dimension features in ev-
ery nodes hi,j = [Cmean|Pmean]. The undirected edges
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Figure 4. The example results of our method. (a) and (g) are the RGB images from UaVid dataset and the corresponding ground truth anno-
tation. (b), (c), (d), (e), and (f) are the predicted segmentation maps of GCN with SLIC+SPL, SFCN+CE, SFCN+wCE, SFCN+Sampling,
and SFCN+SPL, respectively.

E in a graph are simply generated as adjacent relations be-
tween neighborhood nodes.

In this paper, we adopts SFCN[24] rather than SLIC [1]
to obtain more precise boundaries to distinguish adhering
objects.

4.2. Superpixel Penalty Loss Function

In this paper, we propose a novel Superpixel penalty loss
which is designed to address two main problems derived
from Superpixel graph generation and node classification.
The first is the extreme imbalance between node classes
(e.g., Background versus Person) in a graph. In this case,
directly training a GNN classifier with a graph would under-
represent samples from those minority classes and result in
sub-optimal performance. The second is that Superpixels
have a different number of pixels in each Superpixel, but
when it generated as a node in a graph, they do not carry
the information about the amount of pixels in each node. To
mitigate these problems, we introduce Superpixel penalty
loss that adds the class balanced and Superpixel weights to
cross-entropy loss (CE) for node classification. The class

balanced CE in Superpixel penalty loss is defined as:

lk = −wkyk · log exp(xk,yk
)∑C

c=1 exp(xk,c)
(3)

where x is the input, y is the target, w is a class balanced
weight, and C is the number of class. wk can be calculate
as

wk =
N − nk

N
(4)

where N is total samples and n is the number of sam-
ples in each class. Following the above equation, the class
balanced weight gives a more penalty to rare samples than
others. After calculating losses of class balanced CE in each
node, we apply the Superpixel weights to the losses:

SPLk = sk · lk (5)

where SPLk is Superpixel penalty loss in each node k.
sk is a superpixel weight in each node k, as follow

sk = − 1 + ϵ

log pk + ϵ
(6)
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Method Clutter Building Road Static Car Tree Vegetation Human Moving Car mIoU
U-Net[16] 40.3 70.7 63.5 11.9 67.2 35.5 00.0 47.5 40.9
BiSeNet*[25] 64.7 85.7 61.1 63.4 78.3 77.3 17.5 48.6 61.5
BANet*[22] 66.6 85.4 80.7 52.8 78.9 62.1 21.0 69.3 64.6
Ours (SPL) 50.5 79.9 64.9 35.1 67.4 48.4 8.4 40.9 49.4

Table 1. The experimental results on the UAVid dataset. Asterisks of BANet[22] and BiSeNet[25] means the result mentioned in each
paper.

where pk is the normalized number of pixels in a Super-
pixel generated into each node k. ϵ is the constant value for
numerical stability to avoid zero division error, set as 10−5.
We impose a greater penalty for nodes generated by Su-
perpixels containing more pixels than other nodes. Finally,
Superpixel penalty loss is calculated by

SPL =
1

N
([l1, · · · , lN ]T · [s1, · · · , sN ]) (7)

4.3. Spectral Approach

4.3.1 Topology Adaptive Graph Convoloution Layer

Topology Adaptive Graph Convoloution Net-
work(TAGCN)[4] is one of the simplest convolutional
layer for the graph-structured data. Based on the graph
convolutional network(GCN)[8], TAGCN can adapt
higher-order relations between K-hops nodes. Each
k ∈ {1, 2, · · · ,K} means a k-size learnable graph convo-
lution filter, likewise a squared convolution filter of grid
structured data. An output embedding of a vertex is the
weighted sum of these filter’s outputs.

X ′ =

K∑
k=0

(D− 1
2AD− 1

2 )kXΘk, (8)

where A denotes the adjacency matrix, Dii =
∑

j=0 Aij

is diagonal degree matrix, Θk denotes the linear weights to
sum the results of different hops together. TAGCN layer ex-
tracts both vertex features and correlation strength between
vertices.

4.3.2 Multi-layer Loss

As the model gets deeper, GCN suffers from over-
smoothing probelm[10, 15], which is an main obstacle for
GCN to have richer representations. Since GCN aggregates
the features of adjacent nodes inherently, stacking more lay-
ers lead to aggregating more information through further
hops. Thus, it results in convergence of node representa-
tion, which is called over-smoothing, and it is why many
research on GCN have shallow networks. However, more
layers still achieve better performance, we apply the multi-
layer loss to TAGCN to handle the over-smoothing problem

and to make deep GCN.

Loverall =
1

3
(SPLh4

+ SPLh8
+ SPLh12

) (9)

where SPLhi denotes superpixel penalty loss at ith hidden
layer, which will be further explained later. Proposed multi-
layer loss is the average of loss computed at intermediate
convolutional layers after passing each MLP layers. In our
experiment, we extract intermediate loss from 4th, 8th, 12th
graph convolutional layers.

4.4. Spatial Approach

4.4.1 GraphSAGE with Weighted Node Sampling

To handle the class imbalance problem and to enhance the
generality of networks, we adopt the GraphSAGE networks,
which sample subgraphs and aggregate the node informa-
tion. Unlike other node classification is conducted on a sin-
gle graph, our model is applied to multiple graphs at the
same time by constructing one batch graph from multiple
input images while maintaining its inductiveness. There-
fore, we first construct one large graph from multiple graphs
without having any connection between each graph. Then
we sample target nodes with different weight from this
batch graph. Also, we sample the fixed number of neigh-
bor nodes in each layer, not the entire neighbor nodes. With
these approach, GraphSAGE networks have the ability to
get more subgraphs on smaller class as well as encourag-
ing generality of model by dropping some edges between
nodes.

5. Experimental Result
5.1. Dataset

In this study, extensive experiments were conducted to
evaluate the proposed method for UAVid dataset[12]. The
UAVid dataset consists of 42 high-resolution sequential im-
ages in total capturing the urban scenes from an unmanned
aerial vehicle(UAV), with 8 classes. Each sequence has 10
images. In our experiments, the sequential data would be
considered as an individual data. Moreover, The sequence
are split into 20 sequence for train, 7 sequence for valida-
tion, and 15 sequence for test. However, the test subset
does not include ground truth data. So we use validation
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Method Clutter Building Road Static Car Tree Vegetation Human Moving Car mIoU
SFCN + SAMPLING 33.9 64.6 45.0 5.7 58.2 37.4 0.0 10.3 31.9
SLIC + SPL 48.5 78.4 62.7 30.3 67.3 47.3 4.7 32.9 46.6
SFCN + CE 46.2 76.8 57.9 26.8 65.1 45.0 5.6 28.4 44.0
SFCN + WCE 50.1 79.4 63.9 38.8 67.3 47.9 8.5 35.3 48.9
SFCN + SPL 50.5 79.9 64.9 35.1 67.4 48.4 8.4 40.9 49.4

Table 2. Ablation study for various loss function and training strategy on the UAVid dataset.

Method Clutter Building Road Static Car Tree Vegetation Human Moving Car mIoU
APPNP[9] 23.6 48.8 35.8 1.2 47.7 25.7 0.0 7.0 23.7
SGCN[23] 26.5 54.2 32.6 5.8 50.8 30.1 0.0 5.1 25.6
CHEB[3] 12.4 48.4 24.0 6.3 51.2 31.0 0.0 12.8 23.3
GraphSAGE[5] 30.4 61.8 43.7 18.3 57.5 35.3 1.2 21.1 33.7
TAGCN[4] (Ours) 42.5 73.9 53.9 23.9 64.6 42.7 1.4 21.3 40.5

Table 3. Ablation study for various convolutional methods with same architecture on the UAVid dataset, with 10 layers and 256 channels.

subset as test subset. Validation data for training will be
obtained by randomly splitting from training data for every
epoch. Therefore, the experiments are conducted on 200
images for training with randomly chosen 20% validation
subset, and 70 images for test, each of size 4096×2160 or
3840×2160. Also, we modified train subset images into
2048×2048 cropped image, allowing overlapping.

5.2. Implementation

We are conducting two types of experiment; Graph-wise
and Node Sampling. Both methods use same graph dataset
which is made by preprocessing containing node features,
edge relations, node labels. As each image is converted to
corresponding graph, graphs can allocated batch being re-
garded as images. A GNN model train the node features
considering the edges around them, and final node embed-
ding is obtained. This method is simply same with semantic
segmentation, just replacing encoder-decoder architecture
to graph network.

On the other hand, we have tried to adopt Node Sam-
pling. Entire dataset is regarded as a single large graph, and
target nodes are randomly sampled to train as same num-
ber as batch size. Although this might not a efficient way
to train when it comes to the time cost, it allows model to
oversample the scarce classes giving more opportunity to be
trained them. The training procedure adopts early stopping
strategy.

For Graph-Wise model, 12 TAGCN layers with 256
channels are used. For Node Sampling model, Graph Sage
is adopted as a convolutional filter, with same number of
layer and channel. Initial learning rate is lr = 0.001 with
multi-step learning scheduler. Adam optimizer are used
with decay 0.0001. All nodes are trained for the Graph-
Wise model with Dropout rate 0.5, while only three neigh-
bor node are sampled for all layers in the node sampler.

5.3. Evaluation Metric

Node accuracy[6] is used in Node Classification tasks of
GNNs. However, although the proposed approach adopts
GNNs, the node accuracy does not reflect perfectly the
performance of semantic segmentation. Instead, mIoU is
mainly used to evaluate the performance of given networks.
The Jaccard Index(mIoU) is the area of overlap between the
predicted segmentation and the ground truth divided by the
area of union between the predicted segmentation and the
ground truth. To calculate the intersection and union, we
invert graph to image again. In our experiments, even if a
model could get further node accuracy, the mIoU score does
not increased proportionally.

5.4. Result Analysis

To verify the contribution of SPL, SFCN[24], Node Sam-
pling, and TAGCN[4], we have conducted several experi-
ments. The results are shown in Table 2 and Table 3.

In terms of superpixel methods, SFCN outperforms
SLIC[1]. Although node accuracy of SLIC was higher than
SFCN in our SGCN, the overall mIoU score was poor since
SLIC is not able to capture the precise boundaries of ob-
jects. The SPL also outweigh other loss function. Weighted
cross entropy loss considers the imbalance in the number
of class. In addition to that, SPL reflects the size of each
superpixel. Also, we expected Node Sampling to obtain en-
hanced results especially for small objects such as human
and car. However, the results show that Node Sampling is
not helpful to segmentation, so Graph-wise method is se-
lected.

On the other hand, we have adopted various convolu-
tional filters such as APPNP[9], SGCN[23], CHEBConv[3],
GraphSAGE[5], and TAGCN[4]. Among the various con-
volutional network and loss functions, our final frame work
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achieved 49.4% of mIoU score, as shown in Table 2 and Ta-
ble 3. Moreover, the final was better than U-Net[16]. How-
ever, we couldn’t reach the state-of-the-art performance
such as BANet[22] and BiSeNet[25], as shown in Table 1.
More experiments are necessary to improve the overall per-
formance and comparison for other semantic segmentation
methods such as HRNet[20] and ShelfNet[29].

6. Conclusion
Superpixel graph convolutional network can be applied

for semantic segmentation successfully. However, its per-
formance couldn’t reach the state-of-the-art. We suppose
that there might be two reasons for the limitation. At first,
we adopt graph convolutional networks with simple struc-
ture, including only batch normalization and ReLU, with-
out any functional module and blocks. Secondly, there are
only few nodes for some classes. We are looking forward
to developing improved structure to solve these problems
in the future. Also, superpixel procedure is used as data
preprocessing in the proposed method. We are planning to
insert the superpixel training procedure to the entire archi-
tecture, achieving end-to-end Superpixel-based Graph Con-
volutional Network model.

Although the performance of proposed approach has
some limitations, our achievement is very meaningful in
this field. It is a novel methodology expand the concept of
Graph-based machine learning into semantic segmentation
tasks. There are numerous possibilities to be improved with
various auxiliary function. Both research area, Superpixel
and Graph Neural Networks, will contribute to Superpixel-
based Graph Neural Network, while state-of-the-art meth-
ods in each field can be adopted easily for our approach.
In addition, the proposed method can be used on various
dataset and field, including medical image, remote sensing,
autonomous driving, and manufacturing.
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